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Abstract

The transmission of unsteady pressure and shear stress, generated by a turbulent boundary layer in water, through a

viscoelastic layer backed by a rigid plate is investigated. Analytical models are used to estimate the unsteady pressure

and shear stress from 10 to 1000Hz for a flat plate boundary layer with zero pressure gradient. Additionally, models for

the transfer of the unsteady pressures and shear stress through the viscoelastic layer are developed. The models are used

to predict the unsteady pressure fluctuations, or flow noise, which would be seen by a finite size sensor embedded under

the elastomer layer. The unsteady pressure levels are found to be 20 dB greater than the unsteady shear stress levels

across all frequency ranges computed, in agreement with recent measurements. The unsteady pressure transfer

functions have a peak at the shear wavenumber and are larger than the shear stress transfer magnitudes from 10 to

50Hz. The unsteady shear stress transfer functions have a peak at the acoustic wavenumber and are larger than the

pressure transfer magnitudes from 50 to 1000Hz. Over the frequency range examined, the unsteady pressures were

found to be the dominant contributor to the sensor flow noise due to the considerably larger magnitude of the unsteady

pressures on the top of the viscoelastic layer.

r 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

In many underwater vehicle applications, unsteady pressure transducers are mounted on a steel backing plate and

covered with an elastomer layer in order to detect acoustic waves incident on the underwater vehicle (see Fig. 1, for

example). Since the purpose of the unsteady pressure transducers is to detect incoming acoustic waves, any other

unsteady quantity sensed by the transducer is considered noise. For the application under consideration here, in

addition to the incoming acoustic waves, the outer surface of the viscoelastic material is exposed to turbulent flow as the

vehicle moves through the water. Therefore, the pressure sensors located underneath the viscoelastic layer are also

subjected to unsteady pressure and shear stress fluctuations generated by the turbulent boundary layer (TBL). These

fluctuations are considered to be flow noise for acoustic sensing purposes and can also induce vibrations in the steel

backing plate resulting in vibration-induced noise on the acoustic sensor. In the interest of understanding and reducing

this unwanted noise component, the transmission of TBL unsteady wall pressure and shear stress through an elastomer
e front matter r 2008 Elsevier Ltd. All rights reserved.
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Fig. 1. Coordinate system for viscoelastic and plate system.
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layer mounted on a rigid backing plate is studied in this work. Once the unsteady pressure at the surface of the pressure

transducer due to the TBL is known, it can be compared to the magnitude of an incoming acoustic wave to determine

what, if any, signal-to-noise ratio exists for a given situation.

Frequency ranges, flow velocities, sensor sizes, and elastomer thicknesses of interest in underwater vehicle

measurement of acoustic pressures in the presence of TBL-generated flow noise are considered. The normal pressures at

a plate/elastomer layer interface generated by a TBL, for a frequency range of 10–1000Hz and flow speeds of 5, 10 and

15m/s are computed. In addition, the spatial averaging of unsteady pressures and shear stress due to sensors with radii

ranging from 0.05 to 2.54 cm are computed, along with the unsteady pressure and shear stress attenuation due to

elastomer layers with thicknesses of 2.54, 5.08 and 7.62 cm.

Previous work in this area, primarily by Ko and Schloemer (1989, 1992), utilized the Corcos (1964) representation of

the wavevector frequency spectrum. A more recent model by Chase (1987) is used in this work. The work of Ko and

Schloemer did not consider the role of fluctuating shear stress from the TBL, which is the primary emphasis of this

current work. In addition, the work of Ko and Schloemer used only the streamwise wavenumber to approximate the

value of the in-plane wavenumber in calculating the transmission through a viscoelastic layer. The current work utilizes

both streamwise and transverse wavenumbers.

Chase (1993) derived a semi-empirical wavevector–frequency spectrum model of the turbulent wall shear stress. In

this model, the low wavenumber content of the fluctuating wall shear stress is comparable in magnitude to the

fluctuating wall pressure spectrum. Based upon the model, Chase concludes that the transmission of fluctuating shear

stress through a viscoelastic layer may be an important contributor to sensor self-noise for sensors embedded in

elastomer layers. In an earlier work, Chase (1991b), discussed the conversion of shear stress to normal stress within an

elastomer and derived pressure and shear transfer functions. Again, the conclusion was that the level of the unsteady

stress on the surface of the elastomer may contribute to flow noise on a hydrophone.

For this current study, the full two-dimensional Chase (1987) representation of the wavevector–frequency spectrum

for unsteady pressure of the TBL is used. A model proposed by Chase (1993) is used to estimate the unsteady shear

stress at the surface of the elastomer, so the contribution of the shear stress to the unsteady pressures at the surface of

the plate can be computed. Results from the unsteady pressure and shear stress analytical models are compared to

experimental data.

Transfer functions used to propagate the unsteady pressure and shear stress through the viscoelastic layer and resolve

them as normal forces at the viscoelastic/plate interface are presented. The transfer functions are defined as the ratio of

the unsteady pressure at the bottom of the elastomer (surface of the pressure transducer) due to the unsteady pressure

or shear stress at the top of the elastomer. Finally, the unsteady pressure models are combined with the transfer

functions so that the unsteady pressure (or flow noise) at the sensor surface (located under the elastomer) can be

computed for various flow conditions and elastomer layer thicknesses.
2. Unsteady pressure and shear stress models

2.1. Fluctuating wall pressure generated by a turbulent boundary layer

A number of models have been proposed to represent the wavevector–frequency spectrum of turbulent flow over a

planar boundary as shown in Fig. 1. These models assume a homogeneous TBL flow at low Mach number over a

smooth, stationary plane with zero pressure gradient. In general, researchers used measured autocorrelations and cross-
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correlations of the velocity field, along with empirical constants to fit their models to the experimental results. The most

commonly utilized models are those by Corcos (1964), Chase (1980), and Chase (1987). More recently, a model by

Smolyakov and Tkachenko (1992) has been used by researchers, such as Hambric et al. (2004) and Borisyuk and

Grinchenko (1997).

The Corcos model assumes a separable form of the wavevector frequency spectrum, while the Chase (1987) model is

non-separable. In general, the Corcos model has been found by researchers to over estimate the low wavenumber

(below the convective ridge) region of the spectrum (see for example, Borisyuk and Grinchenko, 1997). Keith and

Abraham (1997) examined the reason for the Corcos model over prediction of the low wavenumber region and

concluded it was due to the assumption of a constant convection velocity in the model. Capone and Lauchle (1995)

found the models by Chase to have good agreement with experimental data for water in a channel flow with a slight

modification to one of the model’s empirical constants.

Since the purpose of this work is not to compare various models of TBL wall pressure wavevector frequency spectra,

the model of Chase (1987) will be used without further discussion. The Chase (1987) model is given by

Pðkx; ky;oÞ ¼
r2u3
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where P(kx, ky,o) is the two-sided wavenumber, single-sided frequency spectral density of the TBL wall pressure

fluctuations, kx and ky are the wavenumbers in the x- and y-directions, respectively, K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
y

q
is the magnitude of

the in-plane wavevector, and r, u�, and d are the fluid density, friction velocity, and boundary layer thickness,

respectively. Kc is given by

jKcj
2 ¼

K2 � o2=c2; K4o=c

o2=c2 � K2; Koo=c

( )
, (2)

where c is the speed of sound, and the (K/|Kc|) term in Eq. (1) accounts for compressibility of the fluid, and K+ is

determined from

K2
þ ¼
ðo�UckxÞ

2

ðhpressunÞ
2
þ K2, (3)

where Uc is the convective velocity. The empirical constants in this model, which Chase suggested by comparison to

data from Bull (1967), are

hpress ¼ 3:0; CT ¼ 0:0047; CM ¼ 0:155; b ¼ 0:75; c2 ¼ c3 ¼ 0:17. (4)

The work of Capone and Lauchle (1995) showed that a value of b ¼ 1.40 yielded better agreement with data

measured in water, and it is used in the following calculations. The one-sided autospectral density of the TBL pressure

fluctuations is calculated by the integration of Eq. (1), as performed by Capone and Lauchle (1995),

FppðoÞ ¼ 2

Z 1
�1

Z 1
�1

Pðkx; ky;oÞjHðkx; ky;oÞj2 dkx dky, (5)

where H|kx, ky,o|
2 is the in-plane wavenumber response function of the measurement sensor. As shown by Ko (1993)

for a circular transducer, the in-plane wavenumber response functions is given by
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2 ¼
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where J1 is a Bessel function of the first kind and order one, and R is the radius of the measurement transducer.

Similarly, Ko (1993) showed for a rectangular sensor the in-plane wavenumber response is given by

jHðkx; kyÞj
2 ¼

sinðkxLxÞ

kxLx=2
�
sinðkyLyÞ

kyLy=2

� �2
, (7)

where Lx and Ly are the dimensions of the sensor in the x- and y-directions, respectively.
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2.2. Fluctuating wall shear stress generated by a turbulent boundary layer

The relationship of fluctuating pressure to fluctuating shear stress within the TBL was addressed by Chase (1991a),

and a semi-empirical model was proposed by Chase (1993). At low wavenumbers, Chase proposed that the fluctuating

wall pressure and shear stress have the same wavevector-white form, and they are totally coherent with a phase

difference of p/2. Chase (1993) also showed that at low wavenumbers the fluctuating shear stress is comparable in

magnitude to the fluctuating wall pressure. As discussed previously, given the importance of the low wavenumber

region for low Mach number flows in water, the work of Chase (1993) indicates that fluctuating wall shear stress may be

an important factor in sensor self-noise for unsteady pressure transducers.

Chase’s semi-empirical model for the fluctuating unsteady shear stress is given by

SðoÞ ¼ r2u3
n

Z 1
�1

Z 1
�1

Sþðkxþ; kyþ;oþÞdkxþ dkyþ, (8)

where the subscript plus on a variable indicates it has been non-dimensionalized using inner variables u� and n, and S+

is
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The empirical constants in Eqs. (9) and (10) are given by

B0 ¼ 0:70� 10�4; m ¼ 3:5; n ¼ 4:0; � ¼ 0:11; hs ¼ 2:0; x0 ¼ 0:1; and a0 ¼ 0:0275. (11)

Analogous to the wall pressure frequency spectrum, using Eqs. (8)–(11), the spectrum of the wall shear stress

fluctuations can be calculated by

FssðoÞ ¼ 2

Z 1
�1

Z 1
�1

Sðkx; ky;oÞjHðkx; ky;oÞj2 dkx dky. (12)

Given the frequency spectrum for the unsteady wall pressure, Eq. (5), the magnitude of the normal stress at a given

depth in a viscoelastic layer can be calculated as shown by Ko and Schloemer (1992). In the next section, the work of

Ko and Schloemer will be expanded such that the transfer function for unsteady shear stress will be derived for the

viscoelastic plate system shown in Fig. 1.
2.3. Waves in viscoelastic layers

An incident pressure and/or shear wave on an elastomer layer will result in stresses within the elastomer layer. A

transfer function for the propagation of pressure and shear incident on the top of the elastomer layer, z ¼ h, through

the layer is derived based upon the work by Brekhovskikh (1980) and following the example of Ko and Schloemer

(1989, 1992). If one considers waves in the x- and z-directions, the normal and tangential stresses within the elastic layer

are:

tzz ¼ l
qux

qx
þ

quz

qz

� �
þ 2m

quz

qz
; tzx ¼ m

qux

qz
þ
quz

qx

� �
, (13)

where l and m are Lamé constants, and ux and uz are the normal and tangential displacements, respectively. The

displacements are obtained by

ux ¼
qf
qx
�
qc
qz
; uz ¼

qf
qz
þ
qc
qx

, (14)

where j and c are the potential functions satisfying the two-dimensional wave equations:
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, (15,16)
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where cc and cs are the compressional and shear wave speeds, respectively. The compressional and shear wave speeds

are given by

cc ¼ ccoð1� izcÞ
1=2; cs ¼ csoð1� izsÞ

1=2, (17)

and

cco ¼ Re c2c
� �1=2	 


; cso ¼ Re c2s
� �1=2	 


, (18)

where zc and zs are the compressional and shear loss factors, respectively. Assuming a solution of the form (for waves

traveling in the positive x-direction)

fðx; z; tÞ ¼ FðzÞ e�iðkxx�otÞ; cðx; z; tÞ ¼ CðzÞ e�iðkxx�otÞ (19,20)

and substituting Eqs. (19) and (20) into Eqs. (15) and (16) yields:

q2F
qz2
þ ðK2

com � k2
xÞF ¼ 0;

q2C
qz2
þ ðK2

s � k2
xÞC ¼ 0. (21)

The quantities Kcom ¼ o/cc and Ks ¼ o/cs are the compressional and shear wavenumbers, respectively, in the elastomer

layer. Solutions to Eq. (21) are:

F ¼ A1 cosðazÞ þ A2 sinðazÞ; C ¼ A3 cosðbzÞ þ A4 sinðbzÞ, (22)

where

a ¼ ðK2
com � k2

xÞ
1=2; b ¼ ðK2

s � k2
xÞ

1=2. (23)

Assuming the steel backing plate is rigid, the boundary conditions for the solution of Eq. (22) can be determined. At

the top surface of the layer, the pressure acting in the normal direction is continuous such that

ðtzzÞz¼h ¼ �ðp0 þ FppÞ, (24)

where p0 is the acoustic pressure satisfying the radiation condition

p0 ¼ A0 e
ð�a0zþiotÞ for z4h, (25)

where

a0 ¼ ðk2
x � k2

0Þ
1=2, (26)

and k0 ¼ o/c is the acoustic wavenumber. The displacement of the elastomer is related to the acoustic pressure by
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� �
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where uz is the normal displacement of the elastomer. Using Eqs. (25) and (27) one obtains the result:

p0

��
z¼h
¼ �

r0o
2

a0

� �
½uz�z¼h, (28)

which results in the first boundary condition

tzzjz¼h ¼ �Fpp þ
r0o

2

a0
½uz�z¼h. (29)

The shear stress on the surface of the elastomer is given by Eq. (12) and the normal and tangential displacements of at

the plate are zero, so the remaining boundary conditions are given by

tzxðz ¼ hÞ ¼ Fss; uzðz ¼ 0Þ ¼ 0; uxðz ¼ 0Þ ¼ 0. (30)

Using Eqs. (13) and (14) and the boundary conditions in Eqs. (29) and (30), a system of linear equations is obtained:
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where

a11 ¼ rec2s ðK
2 � b2Þa0 cosðahÞ þ r0o

2a sinðahÞ; a12 ¼ rec2s ðK
2 � b2Þa0 sinðahÞ � r0o

2a cosðahÞ,

a13 ¼ 2irec2s Kba0 sinðbhÞ þ ir0o
2kx cosðbhÞ; a14 ¼ �2irec2s Kba0 cosðbhÞ þ ir0o

2kx sinðbhÞ,

a21 ¼ 2irec2s Ka sinðahÞ; a22 ¼ �2irec2s Ka cosðahÞ,

a23 ¼ �rec2s ðK
2 � b2Þ cosðbhÞ; a24 ¼ �rec2s ðK

2 � b2Þ sinðbhÞ,

a31 ¼ 0; a32 ¼ a; a33 ¼ �iK ; a34 ¼ 0; a41 ¼ �iK ; a42 ¼ 0; a43 ¼ 0; a44 ¼ �b, (32)

where re is the density of the elastomer. Finally, the equation for normal stress at the elastomer plate interface due to

the unsteady pressure and shear stress on the top of the layer is given by

tzz ¼ ðrec2s ðK
2 � b2Þ cosðazÞÞA1 þ ðrec2s ðK

2 � b2Þ sinðazÞÞA2

�
þð2irec2s Kb sinðbzÞÞA3 þ ð�2irec2s Kb cosðbzÞÞA4

�
expð�iðKx� otÞÞ. (33)

Eq. (31) is solved to provide the values of A1�A4, and the results are used in Eq. (33).

In the next section, Eq. (5) for the pressure spectrum from the TBL, Eq. (12) for the shear stress spectrum from the

TBL, and Eq. (33) for the pressure and shear transfer functions are used to calculate the unsteady pressure at the

measurement sensor embedded under the elastomer layer using

FTBLðoÞ ¼ 2

Z 1
�1

Z 1
�1

Pðkx; ky;oÞjHðkx; ky;oÞj2Tðkx; ky;oÞdkx dky þ 2

Z 1
�1

Z 1
�1

Sðkx; ky;oÞ

� jHðkx; ky;oÞj2Tðkx; ky;oÞdkx dky, (34)

where

Tðkx; ky;oÞ ¼
tzz

Fpp or Fss

����
����
2

. (35)

In practice, given the quantity FTBL, one can compare its level to that of an incoming acoustic wave to determine if

the pressure sensor will detect the acoustic wave over the noise. Typically, the elastomer layers chosen for underwater

applications have an acoustic impedance similar to water so that the acoustic pressure transfer function approaches

unity.
3. Results

3.1. Comparison to measured data and the effect of transducer size

Measurements of the fluctuating wall pressure from TBLs in water have been made by many researchers, while a

much smaller experimental database exists for fluctuating wall shear stress. Some of the most widely referenced shear

stress measurements in water have been made by Keith and Bennett (1991) and Colella and Keith (2003). Keith and

Bennett (1991) measured unsteady wall pressures in conjunction with unsteady shear stress measurements, providing a

good basis for comparison to the semi-empirical models discussed above. Fig. 2 provides a comparison of the Keith and

Bennett (1991) data at 6.1m/s with the predictions of Chase’s models. The calculated unsteady pressure levels are

corrected for transducer spatial averaging using Eq. (6) and a sensor circular diameter of 0.1 cm, based upon the

unsteady pressure sensor used by Keith and Bennett (1991). Likewise, the unsteady shear stress measurements are

corrected for transducer spatial averaging using Eq. (7) and streamwise and spanwise lengths of 0.013 and 0.10 cm,

respectively. As noted by Keith and Bennett (1991), a nondimensional frequency of 1.4, the unsteady pressure

measurements should be attenuated by spatial averaging. Fig. 2 shows that the transducer correction factor from Eqs.

(6) and (7) accurately predicted the attenuation caused by the transducers. The agreement between the unsteady

pressure model and the data is excellent, while the shear stress model is slightly low at low frequencies. These models

provide sufficient accuracy for use in prediction of the effect of the TBL unsteady pressure and stress on a sensor under

the elastomer layer.

Using the same flow conditions as the Keith and Bennett experiment, the unsteady pressures which would be

measured by sensors of the size often used in underwater applications are calculated. Fig. 3 shows the calculated

unsteady pressures for transducers with radii of 0.05, 0.1, 0.64, 1.27 and 2.54 cm. As expected, when the transducer size

is larger, the attenuations due to spatial averaging increase with increasing frequency. Clearly, if the intent of a
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Fig. 2. Comparison of calculated and measured (Keith and Bennett, 1991), unsteady pressure and wall shear stress at 6.1m/s.
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measurement is to filter out the high-reduced frequency content of the TBL the use of increasingly larger transducers

can be a means to accomplish this goal. The use of larger transducers can be especially helpful for reducing the high-

frequency boundary layer noise when one wants to discriminate between it and an incoming acoustic wave.
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As the remainder of the results will focus on the effect of the elastomeric layer on the attenuation of the unsteady

pressure and shear, the calculations will be performed with a sensor radius of 0.05 cm. A sensor of such a small size will

minimize the effect of spatial averaging on the results, so that the following results emphasize the impact of the

elastomer layer.
3.2. Unsteady pressure and shear spectra wavenumber transfer functions

Before presenting the integrated results for the normal pressure at the elastomer layer-plate interface, individual

component results will be presented for the pressure transfer function, the shear transfer function, the wall pressure

spectrum, and the wall shear stress spectrum. Table 1 provides the fluid and viscoelastic properties used in the study.

Fig. 4 shows the change in calculated unsteady pressure and shear on the top surface of the elastomer as a function of

flow speed. Both unsteady pressure and shear stress increase as the freestream velocity increases, with the unsteady

pressure magnitude at least 20 dB higher than the unsteady shear magnitude.

Fig. 5 shows the unsteady pressure transfer function for a unit pressure, as a function of kx with ky ¼ 0 for

frequencies of 10, 500 and 1000Hz, and an elastomer thickness of 7.62 cm. Similar to results of Ko and Schloemer

(1992), for the 500 and 1000Hz transfer functions, a peak in the transfer function near the shear wavenumber is
Table 1

Fluid dynamic and material properties used for the study

Parameter Value(s)

UN (m/s) 5, 10, 15

r0 (kg/m
3) 1000

re (kg/m
3) 1200

cc0 (m/s) 1200

cs0 40

zc 0.3

zs 0.03

Elastomer thickness, h (cm) 7.62, 5.08, 2.54
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Fig. 4. Unsteady wall pressure and unsteady shear stress for free stream velocities of 15, 10, and 5m/s.
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observed. Fig. 6 shows the shear pressure transfer function for a unit shear force, as a function of kx with ky ¼ 0 for

frequencies of 10, 500 and 1000Hz, and an elastomer thickness of 7.62 cm. For the shear transfer functions, a peak,

similar to that noted by Chase (1993), is observed for 500 and 1000Hz at the acoustic wavenumber. The acoustic

wavenumber for the 10Hz case is less than the computed wavenumber range of the figure.
-120

-100

-80

-60

-40

-20

0

20

10.001.000.100.01

Pr
es

su
re

 T
ra

ns
fe

r F
un

ct
io

n 
(d

B
)

Pressure TF, 10Hz
Pressure TF, 500 Hz 
Pressure TF, 1000

Wavenumber kx (cm-1)

Fig. 5. Pressure transfer functions for a 7.62 cm thick elastomer layer at 10, 500, and 1000Hz, and flow speed of 15m/s with ky ¼ 0.
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Fig. 6. Shear transfer functions for a 7.62 cm thick elastomer layer at 10, 500, and 1000Hz, and flow speed of 15m/s with ky ¼ 0.
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Figs. 7 and 8 compare the pressure and shear transfer function for the 7.62 cm thick elastomer at 500 and 1000Hz,

respectively. At the acoustic wavenumber and for wavenumbers between 0.1 and 0.5 cm�1 or 1.0 (depending on the

frequency), the shear transfer function is of equal or greater magnitude than the pressure transfer function. Chase

(1993) noted that, with a rigid backing plate, the conversion from surface shear stress to normal stress at the plate
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Fig. 7. Pressure and shear transfer functions for a 7.62 cm thick elastomer layer at 500Hz, and flow speed of 15m/s with ky ¼ 0.
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Fig. 8. Pressure and shear transfer functions for a 7.62 cm thick elastomer layer at 1000Hz, and flow speed of 15m/s with ky ¼ 0.



ARTICLE IN PRESS
D.E. Capone, W.K. Bonness / Journal of Fluids and Structures 24 (2008) 1120–11341130
surface is enhanced, especially near the acoustic wavenumber. Although not shown, the shear transfer function

magnitude at 10Hz is lower than the pressure transfer function for all wavenumbers.

Fig. 9 shows the shear transfer function for three different elastomer thicknesses, 7.62, 5.08 and 2.54 cm at 15m/s. As

the elastomer layer becomes thinner, more shear is transmitted through the elastomer. Although not shown for brevity,
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Fig. 9. Shear transfer functions for a 7.62, 5.08, and 2.54 cm thick elastomer layer at 500Hz, and flow speed of 15m/s with ky ¼ 0.
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Fig. 10. Frequency-dependent pressure and shear transfer functions for an elastomer thickness of 7.62 cm and flow velocity of 15m/s.
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the pressure transfer functions show the same trend for decreasing elastomer thickness. As one might expect, the results

confirm that as the layer becomes thinner, it is less effective in preventing the transmission of the unsteady pressure and

shear through the layer.
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Fig. 11. Frequency-dependent pressure and shear transfer functions for an elastomer thickness of 7.62 cm and flow velocity of 10m/s.
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Fig. 12. Frequency-dependent pressure and shear transfer functions for an elastomer thickness of 2.54 cm and flow velocity of 15m/s.
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3.3. Pressure and shear spectra at the surface of the plate

The frequency-dependent pressure and shear transfer functions are shown in Figs. 10 and 11 for an elastomer thickness of

7.62 cm and flow velocities of 15 and10m/s, respectively. From 10 to 50Hz, the pressure transfer function is larger than the
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Fig. 13. Unsteady pressure and shear at the rigid plate surface as measured by a sensor with radii of 0.05 cm under a 7.62 cm elastomer

layer with a flow velocity of 15m/s.
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Fig. 14. Unsteady pressure and shear at the rigid plate surface as measured by a sensor with radii of 0.05 cm under a 7.62 cm elastomer

layer with a flow velocity of 5m/s.
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Fig. 15. Unsteady pressure and shear at the rigid plate surface as measured by a sensor with radii of 0.05 cm under a 2.54 cm elastomer

layer with a flow velocity of 15m/s.
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shear transfer function, while from 100 to 900Hz, the shear transfer function magnitude is larger. The transfer function

results for 5m/s are consistent with those for flow speeds of 10 and 15m/s. Fig. 12 shows the transfer functions for an

elastomer layer which is 2.54 cm thick and a flow speed of 15m/s. For the thinner layer, the pressure transfer function is

dominant from 10 to 200Hz, and the shear transfer function is higher from 300 to 800Hz. As the elastomer layer becomes

thinner, the unsteady pressure and shear transferred from the top to the bottom of the layer is increased. This result is

consistent with the results of Ko and Schloemer (1992) for the transmission of unsteady pressure.

Lastly, the unsteady pressure and shear at the bottom of the elastomer layer (the top of the rigid plate) is computed

by evaluation of Eq. (34). For all of the results, the measurement sensor is assumed to be a circular transducer with a

0.050 cm active sensing diameter. The unsteady pressure and shear beneath the elastomer measured by a 7.62 cm

elastomer layer at 15m/s is shown in Fig. 13. Across the entire frequency range, 10–1000Hz, the unsteady pressure

generated at the top of the elastomer layer is the dominant noise source as measured by the sensor. By examining Figs. 4

and 10, one can determine why the unsteady pressure controls the noise measured by the sensor. In Fig. 4, it can be seen

that the unsteady pressure levels are approximately 30 dB higher than the unsteady shear for the 15m/s flow velocity. In

Fig. 10, it can be seen that the unsteady shear transfer functions are lower than, or at the most, approximately 10 dB

higher than the unsteady pressure transfer functions. Fig. 14 shows the same comparison as Fig. 13 for a flow speed of

5m/s. Similar to the 15m/s case, the unsteady pressures are the dominant source of noise at the sensor, although at

1000Hz, the difference in level is approximately 8 dB. The case of a 2.54 cm thick elastomer layer for a flow velocity of

15m/s is shown in Fig. 15. In this case, an even larger difference exists between the unsteady pressure and shear stress

magnitude below 100Hz. Chase (1991b) also found that at the acoustic wavenumber the conversion from surface shear

stress to normal stress is reduced for thinner layers.
4. Summary and conclusions

In this work, the unsteady pressure and shear stress on the top of an elastomer layer from a TBL in water are

calculated using two-dimensional wavevector–frequency models. The calculated values are used in conjunction with

derived pressure and shear transfer functions to estimate the flow noise on a sensor embedded under the elastomer layer

backed by a rigid plate. Results are computed for a variety of flow speeds, elastomer thicknesses, and sensor sizes.

A comparison between the two-dimensional TBL model of the unsteady shear stress proposed by Chase (1993) and

the measurements of Keith and Bennett (1991) shows a favorable comparison. As previously verified, the unsteady
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pressures predicted by the model agree with measurements of the unsteady pressure. The unsteady pressures predicted

are found to be between 20 and 35 dB higher than the unsteady shear stress for the flow conditions considered between

10 and 1000Hz. It is also shown that, as the sensor size increases, the measured high-reduced frequency content of the

TBL decreases due to increased sensor spatial averaging.

Transfer functions for the transmission of unsteady pressure and unsteady shear to normal pressure through an

elastomer layer are derived. The unsteady pressure and shear transfer functions are computed as a function of

wavenumber, kx. The unsteady shear transfer functions have a peak at the acoustic wavenumber, while the unsteady

pressure transfer functions have a peak near the shear wavenumber. The transfer functions are integrated over both kx

and ky to provide results as a function of frequency. In general, the transfer functions for pressure are 20–40 dB higher

at frequencies less than 100Hz. Above 100Hz, the unsteady shear transfer functions are 0–10 dB higher. As the

thickness of the covering elastomer layer increases, the pressure or shear transmitted through the layer decreases.

Contributions to the sensor flow noise are computed for a TBL due to unsteady shear stress and unsteady pressure.

For the frequency range of 10–1000Hz, and for all of the flow velocities and elastomer thicknesses examined, the

unsteady pressures are the dominant contributor to the sensor flow noise. This unsteady pressure is the dominant

contributor due to the relatively high level of unsteady pressure and relatively low unsteady shear stress on the surface

of the elastomer layer and the similarity in levels of the pressure and shear stress transfer functions above 100Hz.
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